Skolbanken – inspiration och utveckling från hela landet

Problemlösning

Skapad 2020-01-27 13:56 i Stråtjära skola Söderhamn
Vi ska arbeta med problemlösning. Ni ska få lära er olika strategier för att lösa problemtal.
Grundskola 6 Matematik
Nu har vi problemlösning varje måndag tillsammans med 4-6.

Innehåll

Problemlösning

Nu kommer vi att arbeta med problemlösning. Ni så få lära er olika strategier för problemlösning, lösa problem med flera alternativa lösningar och formulera egna uppgifter. Ni kommer att arbeta både enskilt, i par och i grupp.

 

 

 

 

 

 

Syfte

 

Undervisningens innehåll

Centralt innehåll

 

Detta ska du kunna

  • Läsa och förstå problemet
  • Välj en lämplig metod för att lösa enkla problem
  • Beskriva tillvägagångssättet till dina lösningar
  • Bedöma om lösningen är rimlig

 

 

Arbetssätt

Vi kommer att ta problemlösningen steg för steg. Vi börjar med att tolka och förstå problemet. Vad vet vi? Vad frågar man efter?

Vi kommer att gå igenom olika strategier för att lösa problem. Vi kommer att arbeta med metoden EPA (enskilt, par och alla), vilket innebär att vi samtalar mycket om olika tillvägagångssätt för att lösa problem. Vidare kommer vi lära oss vikten av att vara tydlig och visa hur man gör och tänker. Slutligen ska vi arbeta med att bedöma om svaret verkar rimligt.

Ni ska också få göra egna problem som era klasskamrater ska få testa och utvärdera.

 

 

 

 

Detta kommer vi att bedöma

 

Elevens förmåga att lösa problemtal och använda lämpliga metoder för att lösa talen. 

Elevens förmåga att bedöma om svaret är rimligt

Elevens förmåga att förklara tillvägagångssättet till sina lösningar både skriftligt och muntligt

Elevens förmåga att i redovisningar och samtal föra matematiska resonemang

 

 

 

Kopplingar till läroplanen

  • Syfte
  • formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
    Ma
  • föra och följa matematiska resonemang, och
    Ma
  • använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser.
    Ma
  • Centralt innehåll
  • Rimlighetsbedömning vid uppskattningar och beräkningar i vardagliga situationer.
    Ma  4-6
  • Strategier för matematisk problemlösning i vardagliga situationer.
    Ma  4-6
  • Matematisk formulering av frågeställningar utifrån vardagliga situationer.
    Ma  4-6
  • Kunskapskrav
  • Eleven kan lösa enkla problem i elevnära situationer på ett i huvudsak fungerande sätt genom att välja och använda strategier och metoder med viss anpassning till problemets karaktär.
    Ma  E 6
  • Eleven beskriver tillvägagångssätt på ett i huvudsak fungerande sätt och för enkla och till viss del underbyggda resonemang om resultatens rimlighet i förhållande till problemsituationen samt kan bidra till att ge något förslag på alternativt tillvägagångssätt.
    Ma  E 6
  • Eleven kan redogöra för och samtala om tillvägagångssätt på ett i huvudsak fungerande sätt och använder då bilder, symboler, tabeller, grafer och andra matematiska uttrycksformer med viss anpassning till sammanhanget.
    Ma  E 6
  • I redovisningar och samtal kan eleven föra och följa matematiska resonemang genom att ställa frågor och framföra och bemöta matematiska argument på ett sätt som till viss del för resonemangen framåt.
    Ma  E 6

Matriser

Ma
MATEMATIK kunskapskrav åk 6, Kunskapsstaden Helsingborg

Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att...

I tabellen nedan hittar du kunskapskraven för betyg E - C- A i slutet av årskurs 6.
  • Ma   formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
  • Ma   föra och följa matematiska resonemang, och
  • Ma   använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser.
E
C
A
Eleven kan lösa enkla problem i elevnära situationer på ett i huvudsak fungerande sätt genom att välja och använda strategier och metoder med viss anpassning till problemets karaktär.
Eleven kan lösa enkla problem i elevnära situationer på ett relativt väl fungerande sätt genom att välja och använda strategier och metoder med förhållandevis god anpassning till problemets karaktär.
Eleven kan lösa enkla problem i elevnära situationer på ett väl fungerande sätt genom att välja och använda strategier och metoder med god anpassning till problemets karaktär.
Eleven beskriver tillvägagångssätt på ett i huvudsak fungerande sätt och för enkla och till viss del underbyggda resonemang om resultatens rimlighet i förhållande till problemsituationen samt kan bidra till att ge något förslag på alternativt tillvägagångssätt.
Eleven beskriver tillvägagångssätt på ett relativt väl fungerande sätt och för utvecklade och relativt väl underbyggda resonemang om resultatens rimlighet i förhållande till problemsituationen samt kan ge något förslag på alternativt tillvägagångssätt.
Eleven beskriver tillvägagångssätt på ett väl fungerande sätt och för välutvecklade och väl underbyggda resonemang om resultatens rimlighet i förhållande till problemsituationen samt kan ge förslag på alternativa tillvägagångssätt.
Eleven kan redogöra för och samtala om tillvägagångssätt på ett i huvudsak fungerande sätt och använder då bilder, symboler, tabeller, grafer och andra matematiska uttrycksformer med viss anpassning till sammanhanget.
Eleven kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt sätt och använder då bilder, symboler, tabeller, grafer och andra matematiska uttrycksformer med förhållandevis god anpassning till sammanhanget.
Eleven kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt och effektivt sätt och använder då bilder, symboler, tabeller, grafer och andra matematiska uttrycksformer med god anpassning till sammanhanget.
I redovisningar och samtal kan eleven föra och följa matematiska resonemang genom att ställa frågor och framföra och bemöta matematiska argument på ett sätt som till viss del för resonemangen framåt.
I redovisningar och samtal kan eleven föra och följa matematiska resonemang genom att ställa frågor och framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt.
I redovisningar och samtal kan eleven föra och följa matematiska resonemang genom att ställa frågor och framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt och fördjupar eller breddar dem.
Beröm eller ge feedback på det här materialet genom att skriva en kommentar här: