Skolbanken – inspiration och utveckling från hela landet

Matematik årskurs 1 20/21

Skapad 2020-08-13 12:30 i Lövestad skola Sjöbo
En övergripande planering för årskurs 1 i matematik
Grundskola 1 Matematik
Vi kommer under läsåret att arbeta med talområdet 0-20. Med praktiskt material tränar eleverna antal, talföljd och uppdelning av tal (taluppfattning). Eleverna tränar addition och subtraktion 0-10 och 0-20 utan tiotalsövergång. Vi ramsräknar till 100. Vi lär oss om ental och tiotal, hur tal över tio är uppbyggda och likhetstecknets betydelse. Vi mäter med hela kroppen, gör mönster, tränar tid och klockan, arbetar med problemlösning, både enskilt och i grupp och arbetar med de geometriska figurerna. Vi tränar de vanligaste läges- och storleksorden för att öka elevens rumsuppfattning. Färdighetsträning i matteboken varvas med utomhuslektioner, spel, samtal, diskussioner och grupparbeten. Som stöd i undervisningen använder vi praktiskt material för att öka den matematiska förståelsen och bygga broar mellan det konkreta och abstrakta tänkandet.

Innehåll

 

Övergripande mål och riktlinjer

Kan använda sig av matematiskt tänkande för vidare studier och i vardagslivet, kan lära, utforska och arbeta både självständigt och tillsammans med andra och känna tillit till sin egen förmåga.

Skolans värdegrund och uppdrag

 

Skolan ska stimulera elevernas kreativitet, nyfikenhet och självförtroende samt vilja till att pröva egna idéer och lösa problem.

Såhär ska vi göra

 

  • Spela spel
  • Göra egna räknesagor
  • Arbeta på Gleerupsportalen (digitalt läromedel)
  • Arbeta praktiskt och använda laborativt material både inne och ute
  • Träna på att samarbeta med varandra i olika situationer
  • Arbeta med kooperativt lärande för att stärka kunskaperna i matematik och utveckla det sociala samspelet. 
  •  

 

Konkretiserade mål

Taluppfattning

  • siffrorna 0-9

  • taluppfattning 0-20

  • ramsräkna till 100

  • ordningstalen 1-10

  • räkna addition och subtraktion inom talområdet 0-20 utan tiotalsövergång

  • positionssystemet, tiotal och ental

 

Algebra

  • se och göra enkla mönster

  • träna på likhetstecknets betydelse

 

Geometri

  • känna till vanliga lägesord

  • känna till de geometriska figurerna rektangel, kvadrat, cirkel och triangel

  • träna på att uppskatta, mäta och räkna med storheterna tid (analog, hel och halv) och längd (cm och m)

  • träna att se symmetri i enkla bilder och i naturen

 

Sannolikhet och statistik

  • träna på att göra och läsa av enkla tabeller och diagram

  

Samband och förändringar

  • kunna dubbelt/hälften

Problemlösning

  • träna på att lösa enkla matematiska problem med hjälp av olika strategier

 

Bedömning

 Se matris!

Eleven bedöms kontinuerligt genom att läraren gör observationer på lektioner, både muntligt och praktiskt arbete. Skolverket bedömningsstöd kommer också ligga till grund för bedömningen. Elevens arbete och ansvar för sina studier följs upp varje vecka. 

Kopplingar till läroplanen

  • Syfte
  • formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
    Ma
  • använda och analysera matematiska begrepp och samband mellan begrepp,
    Ma
  • välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter,
    Ma
  • föra och följa matematiska resonemang, och
    Ma
  • använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser.
    Ma
  • Centralt innehåll
  • Naturliga tal och deras egenskaper samt hur talen kan delas upp och hur de kan användas för att ange antal och ordning
    Ma  1-3
  • Centrala metoder för beräkningar med naturliga tal, vid huvudräkning och överslagsräkning samt vid beräkningar med skriftliga metoder och digitala verktyg. Metodernas användning i olika situationer.
    Ma  1-3
  • Matematiska likheter och likhetstecknets betydelse.
    Ma  1-3
  • Hur enkla mönster i talföljder och enkla geometriska mönster kan konstrueras, beskrivas och uttryckas
    Ma  1-3
  • Grundläggande geometriska objekt, däribland punkter, linjer, sträckor, fyrhörningar, trianglar, cirklar, klot, koner, cylindrar och rätblock samt deras inbördes relationer. Grundläggande geometriska egenskaper hos dessa objekt.
    Ma  1-3
  • Vanliga lägesord för att beskriva föremåls och objekts läge i rummet.
    Ma  1-3
  • Jämförelser och uppskattningar av matematiska storheter. Mätning av längd, massa, volym och tid med vanliga nutida och äldre måttenheter.
    Ma  1-3
  • Slumpmässiga händelser i experiment och spel.
    Ma  1-3
  • Enkla tabeller och diagram och hur de kan användas för att sortera data och beskriva resultat från enkla undersökningar, såväl med som utan digitala verktyg.
    Ma  1-3
  • Olika proportionella samband, däribland dubbelt och hälften.
    Ma  1-3
  • Strategier för matematisk problemlösning i enkla situationer.
    Ma  1-3
  • Matematisk formulering av frågeställningar utifrån enkla vardagliga situationer.
    Ma  1-3
  • Hur positionssystemet kan användas för att beskriva naturliga tal. Symboler för tal och symbolernas utveckling i några olika kulturer genom historien.
    Ma  1-3

Matriser

Ma
Matematik årskurs 1

Steg 1
Steg 2
Steg 3
Steg 4
Kunskapskrav i slutet av årskurs 3
Jag kan räkna addition 0-10 med hjälp av konkret material. Jag kan räkna subtraktion 0-10 med hjälp av konkret material.
Jag kan räkna addition 0-10 genom huvudräkning. Jag kan räkna subtraktion 0-10 genom huvudräkning.
Jag kan räkna addition 0-20 genom huvudräkning. Jag kan räkna subtraktion 0-20 genom huvudräkning.
Jag kan räkna addition 0-100 genom huvudräkning. Jag kan räkna subtraktion 0-100 genom huvudräkning. (Eleven kan använda huvudräkning för att genomföra beräkningar med de fyra räknesätten när talen och svaren ligger inom heltalsområdet 0–20, samt för beräkningar av enkla tal i ett utvidgat talområde.)
Jag kan använda mig av talen 0-20. Talens grannar Ramsräkna fram- och baklänges Dela upp tal Siffrans värde
Jag kan använda mig av talen 0-100. Talens grannar Ramsräkna fram- och baklänges Dela upp tal Talens värde (positionssystemet)
Jag kan använda mig av talen 0-200. Talens grannar Ramsräkna fram- och baklänges Dela upp tal Talens värde (positionssystemet)
Jag kan använda mig av talen 0-10 000. Talens grannar Ramsräkna fram- och baklänges Dela upp tal Talens värde (positionssystemet) (Eleven har grundläggande kunskaper om naturliga tal och kan visa det genom att beskriva tals inbördes relation samt genom att dela upp tal.)
Du kan namnge cirkel, kvadrat, rektangel och triangel. Jag känner till några lägesord.
Du kan beskriva cirkel, kvadrat, rektangel och triangel. Jag känner till flera lägesord.
Du kan jämföra cirkel, kvadrat, rektangel och triangel (likheter och olikheter). Jag känner till flera lägesord och kan använda några.
Du kan använda geometriska ord för att beskriva och jämföra olika geometriska figurer. Jag känner till flera lägesord och kan använda flera. (Eleven kan använda grundläggande geometriska begrepp och vanliga lägesord för att beskriva geometriska objekts egenskaper, läge och inbördes relationer.)
Jag kan fortsätta på ett enkelt mönster. (ex cirkel blå röd blå röd...)
Jag kan fortsätta på ett enkelt geometriskt mönster och talföljder. (ex triangel, cirkel, kvadrat… 2, 4, 6...)
Jag kan fortsätta och göra ett enkelt geometriskt mönster och talföljder. (Med både färg och form)
Jag kan fortsätta och göra ett geometriskt mönster och talföljder. (Med både färg och form.) (Eleven kan föra och följa matematiska resonemang om val av metoder och räknesätt samt om resultats rimlighet, geometriska mönster och mönster i talföljder genom att ställa och besvara frågor som i huvudsak hör till ämnet.)
Jag kan läsa av ett enkelt stapeldiagram och en enkel tabell.
Jag kan läsa av och skapa ett enkelt stapeldiagram och en enkel tabell.
Jag kan göra en undersökning och skapa en enkel tabell och ett enkelt stapeldiagram.
Jag kan göra en undersökning och skapa en enkel tabell och ett enkelt stapeldiagram, linjediagram och cirkeldiagram. (Eleven kan dessutom vid olika slag av undersökningar i välkända situationer avläsa och skapa enkla tabeller och diagram för att sortera och redovisa resultat.)
Jag kan läsa av hela timmar på den analoga klockan.
Jag kan läsa av hela och halva timmar på den analoga klockan.
Jag kan läsa av hela, halva, kvart i och kvart över på den analoga klockan.
Jag kan läsa av hela analoga klockan. Jag vet att 1 h är samma som 60 min och att 1 min är 60 sek. (Eleven kan göra enkla mätningar, jämförelser och uppskattningar av tider och använder vanliga måttenheter för att uttrycka resultatet.)
Beröm eller ge feedback på det här materialet genom att skriva en kommentar här: