Skolbanken – inspiration och utveckling från hela landet

Tal 9e ht20

Skapad 2020-08-17 13:47 i Torpskolan Lerum
Tal - Kap. 1 - Matematik Direkt 9
Grundskola 9 Matematik
Du ska kunna förstå och använda tal i olika former BRÅK. Algebraiska uttryck Multiplikation i parantes Faktorisera uttryck Ekvationer Problemlösning med ekvationer. TID 4-5 veckor. Oförberett prov dit vi har kommit när provet dyker upp på bänken framför er... När? Det vet ni inte.

Innehåll

Tal
Du ska kunna förstå och använda tal i olika former
samt:


BRÅK.
Algebraiska uttryck
Multiplikation i parantes
Faktorisera uttryck
Ekvationer
Problemlösning med ekvationer.

TID 4-5 veckor.

Oförberett prov dit vi har kommit när provet dyker upp på bänken framför er... När? Det vet ni inte.
AVSLUTNINGSPROV

  •  

 

Matte 9e

Vecka

Må/ti

ons

to/fr

34

 

 

INTRO klar s 11. (Kap 1:1)

37

1:2

1:3

1:4

38

1:5

1:6

1:7

39

1:8

1:9

 

40

Problem

TEST i bok

FÖRDJUPNING

41

BAS/HÖG

BAS HÖG

BAS HÖG

42

 

 

 

43

 

 

 

 

 

       
       
       
       
       
       
       
       
     

 

 

Kopplingar till läroplanen

  • Syfte
  • formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
    Ma
  • använda och analysera matematiska begrepp och samband mellan begrepp,
    Ma
  • välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter,
    Ma
  • föra och följa matematiska resonemang, och
    Ma
  • använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser.
    Ma
  • Centralt innehåll
  • Reella tal och deras egenskaper samt deras användning i vardagliga och matematiska situationer.
    Ma  7-9
  • Talsystemets utveckling från naturliga tal till reella tal. Metoder för beräkningar som använts i olika historiska och kulturella sammanhang.
    Ma  7-9
  • Tal i potensform. Grundpotensform för att uttrycka små och stora tal samt användning av prefix.
    Ma  7-9
  • Tal i potensform. Grundpotensform för att uttrycka små och stora tal samt användning av prefix.
    Ma  7-9
  • Centrala metoder för beräkningar med tal i bråk- och decimalform vid överslagsräkning, huvudräkning samt vid beräkningar med skriftliga metoder och digital teknik. Metodernas användning i olika situationer.
    Ma  7-9
  • Rimlighetsbedömning vid uppskattningar och beräkningar i vardagliga och matematiska situationer och inom andra ämnesområden.
    Ma  7-9
  • Strategier för problemlösning i vardagliga situationer och inom olika ämnesområden samt värdering av valda strategier och metoder.
    Ma  7-9
  • Strategier för problemlösning i vardagliga situationer och inom olika ämnesområden samt värdering av valda strategier och metoder.
    Ma  7-9
  • Matematisk formulering av frågeställningar utifrån vardagliga situationer och olika ämnesområden.
    Ma  7-9
  • Matematisk formulering av frågeställningar utifrån vardagliga situationer och olika ämnesområden.
    Ma  7-9
  • Enkla matematiska modeller och hur de kan användas i olika situationer.
    Ma  7-9
  • Enkla matematiska modeller och hur de kan användas i olika situationer.
    Ma  7-9

Matriser

Ma
Matematik - Tal - Åk 9

Betygskriterier

F
E
C
A
Begrepp
Använder och analysera matematiska bergrepp och samband mellan begrepp.
Du har svårt att förstå och använda begreppen.
Du har grundläggande kunskaper om matematiska begrepp. Du visar det genom att använda dem i välkända sammanhang på ett i huvudsak fungerande sätt.
Du har goda kunskaper om matematiska begrepp. Du visar det genom att använda dem i bekanta sammanhang på ett relativt väl fungerande sätt.
Du har mycket goda kunskaper om matematiska begrepp. Du visar det genom att använda dem i nya sammanhang på ett väl fungerande sätt.
Metoder
Kunna välja lämpliga matematiska metoder för beräkningar.
Du har svårt att hitta en metod som löser problemen.
Du kan välja och använda i huvudsak fungerande matematiska metoder med viss anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom området Tal med tillfredsställande resultat.
Du kan välja och använda ändamålsenliga matematiska metoder med relativt god anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom området Tal med gott resultat.
Du kan välja och använda ändamålsenliga och effektiva matematiska metoder med god anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom området Tal med mycket gott resultat.
Problemlösning
Formulerar och löser problem med hjälp av matematik.
Du har svårt att lösa olika typer av problem.
Du kan lösa olika problem i bekanta situationer på ett i huvudsak fungerande sätt genom att välja och använda strategier och metoder med viss anpassning till problemets karaktär samt bidra till att formulera enkla matematiska modeller som kan tillämpas i sammanhanget.
Du kan lösa olika problem i bekanta situationer på ett relativt väl fungerande sätt genom att välja och använda strategier och metoder med förhållandevis god anpassning till problemets karaktär samt formulera enkla matematiska modeller som efter någon bearbetning kan tillämpas i sammanhanget.
Du kan lösa olika problem i bekanta situationer på ett väl fungerande sätt genom att välja och använda strategier och metoder med god anpassning till problemets karaktär samt formulera enkla matematiska modeller som kan tillämpas i sammanhanget.
Kommunikation/Redovisning
Använder matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser.
Din redovisning saknar flera steg och är svår att följa.
Du använder matematiska symboler och andra uttrycksformer på ett i huvudsak fungerande sätt. Dina redovisningar innehåller matematiska argument som till viss del för resonemanget framåt.
Du använder matematiska symboler och andra uttrycksformer på ett ändamålsenligt sätt. Dina redovisningar innehåller matematiska argument som för resonemanget framåt.
.Du använder matematiska symboler och andra uttrycksformer på ett ändamålsenligt och effektivt sätt. Dina redovisningar innehåller matematiska argument som för resonemanget framåt och fördjupar eller breddar dem.
Resonemang
För och följer matematiska resonemang samt värderar valda strategier och metoder.
Du har svårt att resonera.
Du för enkla och till viss del underbyggda resonemang om val av tillvägagångssätt och om resultatens rimlighet i förhållande till problemsituationen samt kan bidra till att ge något förslag på alternativt tillvägagångssätt.
Du för utvecklade och relativt väl underbyggda resonemang om val av tillvägagångssätt och om resultatens rimlighet i förhållande till problemsituationen samt kan ge något förslag på alternativt tillvägagångssätt.
Du för välutvecklade och väl underbyggda resonemang om val av tillvägagångssätt och om resultatens rimlighet i förhållande till problemsituationen samt kan ge förslag på alternativt tillvägagångssätt.
Beröm eller ge feedback på det här materialet genom att skriva en kommentar här: