Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att
formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder (Problemlösning)
använda och analysera matematiska begrepp och samband mellan begrepp (Begrepp)
välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter (Metod)
föra och följa matematiska resonemang (Resonemang)
använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser (kommunikation).
Centralt innehåll enligt kursplanen
Mål för arbetsområdet
I detta arbetsområde kommer du få lära dig:
Arbetsformer och bedömning
För att uppnå målen kommer genomgångar av olika moment att hållas, tid för enskild räkning av uppgifterna i boken. På lektionerna kommer olika begrepp och lösningsmetoder diskuteras, både i större och mindre grupper. Läxor kan komma att ges. Området kommer bedömas bl.a. löpande under lektionstid, muntliga diskussioner i grupp och enskilt med lärare, samt prov.
Utveckla förmågan att... |
||||
F-nivå
Ännu ej godtagbara kunskaper för årskursen
|
E-nivå
Godtagbara kunskaper för årskursen
|
C-nivå
Godtagbara kunskaper för årskursen
|
A-nivå
Godtagbara kunskaper för årskursen
|
|
---|---|---|---|---|
1
Problemlösning
- formulera och lösa problem
|
|
Du kan på ett ganska bra sätt lösa olika matteproblem som handlar om saker som du känner till.
|
Du kan på ett bra sätt lösa olika matteproblem som handlar om saker som du känner till.
|
Du kan på ett mycket bra sätt lösa olika matteproblem som handlar om saker som du känner till.
|
2
Begrepp
- använda matematiska begrepp
|
|
Du har baskunskaper om matematiska begrepp. Du använder dem på ett ganska bra sätt i situationer som du känner till väl.
|
Du har goda kunskaper om matematiska begrepp. Du använder dem på ett bra sätt i situationer som du känner till.
|
Du har mycket goda kunskper om matematiska begrepp. Du använder dem på ett mycket bra sätt i nya situationer.
|
3
Metoder
- använda matematiska metoder för att göra beräkningar.
|
|
Du kan göra uträkningar i aritmetik, algebra, geometri, sannolikhet, statistik, samband och förändring på ett ganska bra sätt. Du väljer och använder metoder som passar ganska bra för att göra uträkningar.
|
Du kan göra uträkningar i aritmetik, algebra, geometri, sannolikhet, statistik, samband och förändring på ett bra sätt. Du väljer och använder metoder som passar bra för att göra uträkningar.
|
Du kan göra uträkningar i aritmetik, algebra, geometri, sannolikhet, statistik, samband och förändring på ett mycket bra sätt. Du väljer och använder metoder som passar mycket bra för att göra uträkningar.
|
4
Resonemang
- föra och följa matematiska resonemang.
|
|
Du kan förklara hur du har tänkt och förstå hur andra har tänkt när ni diskuterar matematik. Du motiverar dina förklaringar och ställer frågor så att diskussionerna fortsätter på ett ganska bra sätt.
|
Du kan förklara hur du har tänkt och förstå hur andra har tänkt när ni diskuterar matematik. Du motiverar dina förklaringar och ställer frågor så att diskussionerna fortsätter på ett bra sätt.
|
Du kan förklara hur du har tänkt och förstå hur andra har tänkt när ni diskuterar matematik. Du motiverar dina förklaringar och ställer frågor så att diskussionerna fortsätter på ett mycket bra sätt.
|
5
Kommunikation
- samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser.
|
|
Du kan förklara och prata på ett ganska bra sätt om hur man gör uträkningar. Du använder symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttryck som passar ganska bra ihop med situationen och målet.
|
Du kan förklara och prata på ett bra sätt om hur man gör uträkningar. Du använder symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttryck som passar bra ihop med situationen och målet.
|
Du kan förklara och prata på ett mycket bra sätt om hur man gör uträkningar. Du använder symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttryck som passar mycket bra ihop med situationen och målet.
|