Skolbanken – inspiration och utveckling från hela landet

Geometri åk 9

Skapad 2020-10-17 09:19 i Spängerskolan Kristianstad
Grundskola 9 Matematik
Geometri (grekiska: γεωμετρια geometria, av γεω geo ”jord”, och μετρια metria ”mäta”) är en gren av matematiken där man studerar vilka egenskaper figurer har i ett rum eller, mer generellt, rumsliga samband. (Wikipedia)

Innehåll

Här under hittar ni bifogad planering i geometri.

Uppgifter

  • Geometri år 9

Kopplingar till läroplanen

  • Syfte
  • formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
    Ma
  • använda och analysera matematiska begrepp och samband mellan begrepp,
    Ma
  • välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter,
    Ma
  • föra och följa matematiska resonemang, och
    Ma
  • använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser.
    Ma
  • Centralt innehåll
  • Talsystemets utveckling från naturliga tal till reella tal. Metoder för beräkningar som använts i olika historiska och kulturella sammanhang.
    Ma  7-9
  • Geometriska objekt och deras inbördes relationer. Geometriska egenskaper hos dessa objekt.
    Ma  7-9
  • Avbildning och konstruktion av geometriska objekt, såväl med som utan digitala verktyg. Skala vid förminskning och förstoring av två- och tredimensionella objekt.
    Ma  7-9
  • Likformighet och symmetri i planet.
    Ma  7-9
  • Metoder för beräkning av area, omkrets och volym hos geometriska objekt, samt enhetsbyten i samband med detta.
    Ma  7-9
  • Geometriska satser och formler och behovet av argumentation för deras giltighet.
    Ma  7-9
  • Strategier för problemlösning i vardagliga situationer och inom olika ämnesområden samt värdering av valda strategier och metoder.
    Ma  7-9
  • Matematisk formulering av frågeställningar utifrån vardagliga situationer och olika ämnesområden.
    Ma  7-9
  • Enkla matematiska modeller och hur de kan användas i olika situationer.
    Ma  7-9
  • Hur algoritmer kan skapas, testas och förbättras vid programmering för matematisk problemlösning.
    Ma  7-9

Matriser

Ma
Geometri åk 9

Geometri

Insats krävs
E
C
A
Problemlösning
Lösa problem med strategier, metoder & modeller
Du kan lösa olika problem i bekanta situationer på ett i huvudsak fungerande sätt genom att välja och använda strategier och metoder med viss anpassning till problemets karaktär samt bidra till att formulera enkla matematiska modeller som kan tillämpas i sammanhanget.
Du kan lösa olika problem i bekanta situationer på ett relativt väl fungerande sätt genom att välja och använda strategier och metoder med förhållandevis god anpassning till problemets karaktär samt formulera enkla matematiska modeller som efter någon bearbetning kan tillämpas i sammanhanget.
Du kan lösa olika problem i bekanta situationer på ett väl fungerande sätt genom att välja och använda strategier och metoder med god anpassning till problemets karaktär samt formulera enkla matematiska modeller som kan tillämpas i sammanhanget.
Begrepp
Använda matematiska begrepp
Du har grundläggande kunskaper om matematiska begrepp och visar det genom att använda dem i välkända sammanhang på ett i huvudsak fungerande sätt.
Du har goda kunskaper om matematiska begrepp och visar det genom att använda dem i bekanta sammanhang på ett relativt väl fungerande sätt.
Du har mycket goda kunskaper om matematiska begrepp och visar det genom att använda dem i nya sammanhang på ett väl fungerande sätt.
Metoder
Välja och använda matematiska metoder
Du kan välja och använda i huvudsak fungerande matematiska metoder med viss anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom algebra med tillfredsställande resultat.
Du kan välja och använda ändamålsenliga matematiska metoder med relativt god anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom algebra med gott resultat.
Du kan välja och använda ändamålsenliga och effektiva matematiska metoder med god anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom algebra med mycket gott resultat.
Kommunikation
Redogöra för & samtala om tillvägagångssätt
Du kan redogöra för och samtala om tillvägagångssätt på ett i huvudsak fungerande sätt och använder då symboler, algebraiska uttryck, formler och andra matematiska uttrycksformer med viss anpassning till syfte och sammanhang.
Du kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt sätt och använder då symboler, algebraiska uttryck, formler och andra matematiska uttrycksformer med förhållandevis god anpassning till syfte och sammanhang.
Du kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt och effektivt sätt och använder då symboler, algebraiska uttryck, formler och andra matematiska uttrycksformer med god anpassning till syfte och sammanhang.
Resonemang
Föra och bemöta matematiska resonemang.
Du för och följer matematiska resonemang genom att framföra och bemöta matematiska argument som till viss del för resonemangen framåt.
Du för och följer matematiska resonemang genom att framföra och bemöta matematiska argument som för resonemangen framåt.
Du för och följer matematiska resonemang genom att framföra och bemöta matematiska argument som för resonemanget framåt och fördjupar eller breddar dem.
Beröm eller ge feedback på det här materialet genom att skriva en kommentar här: