Skolbanken – inspiration och utveckling från hela landet

Favorit matematik åk 2

Skapad 2020-10-28 08:49 i Liljansskolan Falun
Favorit Matematik 2A – Kapitel 2, Tiotalsövergång
Grundskola 2 Matematik
Du kommer att få arbeta med en bok som heter favorit matematik. Utöver det kommer du få arbeta med matematik på andra sätt.

Innehåll

Konkretiserade mål

Du ska bland annat kunna:

• addition och subtraktion inom talområdet 0–100

• nyttja uppdelning vid tiotalsövergång i addition och subtraktion

• repetera valutan kronor

• huvudräkningsuppgifter till kapitlets innehåll

 

Undervisningens innehåll

Du kommer att få möjlighet att träna på detta genom att bland annat:

• repetera tiokompisarna

• nyttja tiokompisarna vid addition där summan är ett helt tiotal

• nyttja tiokompisarna vid subtraktion från hela tiotal

• addera upp till 10 först vid tiotalsövergång och sedan addera resten

• addera ental till ett tvåsiffrigt tal, med tiotalsövergång

• subtrahera ental från ett tvåsiffrigt tal, med tiotalsövergång

• öva på tiotalsövergång med hjälp av tallinjen och hundratavlan i spel

• räkna addition och subtraktion med valutan kronor inom talområdet 0–100

• lyssna på en ramberättelse med matematiskt innehåll

• delta i samtal och diskussioner utifrån en samtalsbild

• titta på en samtalsbild och svara på frågor kring den

• svara på muntliga huvudräkningsuppgifter som är aktuella till lektionens innehåll

 

Bedömning

Vad bedöms?

Det som bedöms är de konkretiserade målen som finns beskrivna i varje kapitels pedagogiska planering.

Hur sker bedömningen?

Efter varje arbetsområde gör eleverna en självskattning, en diagnos och ett summativt prov.

Matriser

Ma
Matematik ht åk 2

Taluppfattning och tals användning

Du har nått delar av målet.
Du har nått målet.
Du har nått målet och visat att du kan mer.
Tal 0-100
Naturliga tal och deras egenskaper samt hur de kan användas för att ange tal och ordning.
  • Ma   3
  • Ma   3
  • Ma   3
  • Ma   3
Du är osäker på: - talen 0-100 - att markera talen 0-100 på en tallinje. - användnigen av < och > och vad de står för. - räkneramsan framåt och bakåt 0-100. - 10-hopp framåt och bakåt 0-100.
Du kan: - talen 0-100. - markera talen 0-100 på en tallinje. - använda < och > och vet vad de står för. - räkneramsan framåt och bakåt 0-100. - hoppa 10-hopp framåt och bakåt 0-100.
Du har visat att du kan mer: - du kan högre tal än 0-100. - du kan markera högre tal än 0-100 på en tallinje. - du kan använda < och > och vet vad de står för. - du kan räkneramsan framåt och bakåt med högre tal än 100. - du kan hoppa 10-hopp framåt och bakåt med högre tal än 100.
Tal 0-100
Hur positionssystemet kan användas för att beskriva naturliga tal. Symboler för tal och symbolernas utveckling i några olika kulturer genom historien.
  • Ma   3
  • Ma   3
  • Ma   3
  • Ma   3
Du är osäker på: - skillnaden mellan ental och tiotal. - värdet av ental och tiotal.
Du kan: - skillnaden mellan ental och tiotal. - värdet av ental och tiotal.
Du har visat att du kan mer: - du kan skillnaden mellan ental, tiotal och ex. hundratal - du vet värdet av ental, tiotal och ex. hundratal.
Bråk
Del av helhet och del av antal. Hur delarna kan benämnas och uttryckas som enkla bråk samt hur enkla bråk förhåller sig till naturliga tal.
  • Ma   3
Du är osäker på: - hur mycket hälften av en helhet är. - hur mycket 1/3, 1/4, 1/5, 1/6 och 1/8 av helhet är.
Du kan: - hur mycket hälften av en helhet är - hur mycket 1/3, 1/4, 1/5, 1/6 och 1/8 av helhet är.
Du har visat att du kan mer: - hur mycket hälften av en helhet är. - än 1/3, 1/4, 1/5, 1/6 och 1/8 av helhet. Ex. 1/10, 3/9.
De fyra räknesätten
De fyra räknesättens egenskaper och samband samt användning i olika situationer.
  • Ma   3
Du är osäker på: - sambandet mellan addition och multiplikation. - multiplikation med 2, 5 och 10. - den kommutativa lagen inom multiplikation. - division med 2, 3, 4 och 6.
Du kan: - sambandet mellan addition och multiplikation. - multiplikation med 2, 5 och 10. - den kommutativa lagen inom multiplikation (5x2 = 2x5). - division med 2, 3, 4 och 6.
Du har visat att du kan mer: - du kan multiplikation med andra tal än 2, 5 och 10. - du kan division med andra tal än 2, 3, 4 och 6.
Centrala metoder för beräkningar med naturliga tal, vid huvudräkning och överslagsräkning och vid beräkningar med skriftliga metoder och miniräknare. Metodernas användning i olika situationer.
  • Ma   3
Du är osäker på: - att talsortsräkna inom addition (tiotalen och entalen för sig). - att talsortsräkna inom subtraktion. - att räkna till helt tiotal, addition och subtraktion. - additionsuppställning med och utan växling. - subtraktions-uppställning med och utan växling. - att tolka textuppgifter och välja rätt räknesätt. - hur en miniräknare används.
Du kan: - talsortsräkna inom addition (tiotalen och entalen för sig). - talsortsräkna inom subtraktion. - räkna till helt tiotal, addition och subtraktion. - additionsuppställning med och utan växling. - subtraktions-uppställning med och utan växling. - tolka textuppgifter och välja rätt räknesätt. - använda en miniräknare.
Du har visat att du kan mer: - du hjälper andra att förstå.

Algebra

Du har nått delar av målet.
Du har nått målet.
Du har nått målet och visat att du kan mer.
Likhetstecknets betydelse
Matematiska likheter och likhetstecknets betydelse.
  • Ma   3
Du är osäker på: - att lösa uppgifter där det ena talet är dolt.
Du kan: - lösa uppgifter där det ena talet är dolt.
Du har visat att du kan mer: - du ka lösa uppgifter med höga tal där det ena talet är dolt.
Hur enkla mönster i talföljder och enkla geometriska mönster kan konstrueras, beskrivas och uttryckas.
  • Ma   3
Du är osäker på: - hur man fortsätter ett geometriskt mönster - hur man fortsätter ett talmönster.
Du kan: - fortsätta ett geometriskt mönster - fortsätta ett talmönster
Du har visat att du kan mer: - du kan göra egna geometriska mönster. - du kan göra ett eget talmönster.

Geometri

Du har nått delar av målet.
Du har nått målet.
Du har nått målet och visat att du kan mer.
Konstruktion av geometriska objekt. Skala vid enkel förstoring och förminskning.
  • Ma   3
Du är osäker på: - hur man ritar av en bild från ett rutsystem och hur man förstorar den.
Du kan: - rita av en bild från ett rutsystem och även förstora den.
Du har visat att du kan mer: - du kan även förminska bilden.
Vanliga lägesord för att beskriva föremåls och objekts läge i rummet.
  • Ma   3
Du är osäker på: - olika lägesangivelser - att rita av en enkel figur i ett rutsystem - att rita spegelvända figurer i rutsystem
Du kan: - olika lägesangivelser - rita av en enkel figur i ett rutsystem - rita spegelvända figurer i rutsystem
Du har visat att du kan mer: - du kan rita av en svår figur i ett rutsystem.
Symmetri, till exempel i bilder och i naturen, och hur symmetri kan konstrueras.
  • Ma   3
Du är osäker på: - att rita och måla symmetri. - vad en symmetrilinje är
Du kan: - rita och måla symmetri. - vad en symmetrilinje är
Du har visat att du kan mer: - du kan med ord förklara vad symmetri är.

Sannolikhet och statistik

Du har nått delar av målet.
Du har nått målet.
Du har nått målet och visat att du kan mer.
Enkla tabeller och diagram och hur de kan användas för att sortera data och beskriva resultat från enkla undersökningar.
  • Ma   3
Du är osäker på: - att fylla i stapeldiagram - att jämföra och samtala om resultat och slutsatser.
Du kan: - fylla i stapeldiagram - jämföra och samtala om resultat och slutsatser
Du har visat att du kan mer: - du kan använda andra diagram än stapeldiagram.

Problemlösning

Du har nått delar av målet.
Du har nått målet.
Du har nått målet och visat att du kan mer.
Strategier för matematisk problemlösning i enkla situationer.
  • Ma   3
Du är osäker på: - hur man löser problem i vardagsnära situationer. - hur man arbetar enligt strukturen; uppgift, uträkning, svarrita, uppgift, svar.
Du kan: - lösa problem i vardagsnära situationer. - arbeta enligt strukturen; uppgift, uträkning, svarrita, uppgift, svar.
Du har visat att du kan mer: - du kan lösa problem i ett större sammanhang.
Matematisk formulering av frågeställningar utifrån enkla vardagliga situationer.
  • Ma   3
Du är osäker på: - att förstå och räkna räkneberättelser - att formulera matematiska uttryck till räkneberättelser
Du kan: - förstå och räkna räkneberättelser - formulera matematiska uttryck till räkneberättelser
Du har visat att du kan mer: - du kan konstruera egna räkneberättelser.
Beröm eller ge feedback på det här materialet genom att skriva en kommentar här: