👋🏼Vi håller på att göra om Skolbanken med nytt gränssnitt och nya förbättrade funktioner! Ta en smygtitt på Nya Skolbanken här

Skolbanken – inspiration och utveckling från hela landet

2020 - Matematik 1c - Te20G - Berzeliusskolan Linköping

Skapad 2020-11-09 14:22 i Berzeliusskolan gymnasium Linköping
Gymnasieskola Matematik
Bygger vidare på och fördjupar grundskolematematiken med aritmetik, algebra och procent samt grundläggande sannolikhetslära och statistik. Behandlar linjära funktioner och exponentialfunktioner. Geometri med bland annat introduktion till trigonometri och vektorer.

Innehåll

Preliminär tidsram

Under kursen ges tre prov: 

Prov 1: Aritmetik och Algebra, Måndag 14/9-2020

Prov 2: Procent, Geometri och Statistik, Fredag 11/12-2020

Slutprov: Hela kursen, Måndag 7/6-2021

Den detaljerade planeringen finns på länken:

 

Examinationsformer

  • Skriftliga delprov
    • Resultaten från dessa finns på Kunskapsmatrisen.
  • Slutprov i form av helkursprov görs i slutet av kursen
    • Resultatet från detta inkluderas i slutbedömningen, men delges ej digitalt.
  • Missade examinationer 
    • Missar eleven en examination får de visa kunskaperna vid kommande examinationer samt på slutprovet. 

 

Betygsättning

  • Betygsättning sker i slutet av kursen utifrån de kunskaper eleven visat under kursens gång.
  • Betygsprognos lämnas inför vårens utvecklingssamtal.

 

Räknestuga i matematik

  • Räknestuga erbjuds på onsdagseftermiddagar av Berzeliusskolan.
  • För annan hjälp i matematik och fysik se länk

Kopplingar till läroplanen

  • Centralt innehåll
  • Egenskaper hos mängden av heltal, olika talbaser samt begreppen primtal och delbarhet.
    Mat  -
  • Metoder för beräkningar inom vardagslivet och karaktärsämnena med reella tal skrivna på olika former, inklusive potenser med reella exponenter samt strategier för användning av digitala verktyg.
    Mat  -
  • Generalisering av aritmetikens räknelagar till att hantera algebraiska uttryck, såväl med som utan symbolhanterande verktyg.
    Mat  -
  • Begreppet linjär olikhet.
    Mat  -
  • Algebraiska och grafiska metoder för att lösa linjära ekvationer och olikheter samt potensekvationer, såväl med som utan numeriska och symbolhanterande verktyg.
    Mat  -
  • Begreppen sinus, cosinus och tangens och metoder för beräkning av vinklar och längder i rätvinkliga trianglar.
    Mat  -
  • Begreppet vektor och dess representationer såsom riktad sträcka och punkt i ett koordinatsystem.
    Mat  -
  • Addition och subtraktion med vektorer och produkten av en skalär och en vektor.
    Mat  -
  • Matematisk argumentation med hjälp av grundläggande logik inklusive implikation och ekvivalens samt jämförelser med hur man argumenterar i vardagliga sammanhang och inom naturvetenskapliga ämnen.
    Mat  -
  • Illustration av begreppen definition, sats och bevis, till exempel med Pythagoras sats och triangelns vinkelsumma.
    Mat  -
  • Fördjupning av procentbegreppet: promille, ppm och procentenheter.
    Mat  -
  • Begreppen förändringsfaktor och index. Metoder för beräkning av räntor och amorteringar för olika typer av lån med kalkylprogram.
    Mat  -
  • Begreppen funktion, definitions- och värdemängd samt egenskaper hos linjära funktioner samt potens- och exponentialfunktioner.
    Mat  -
  • Representationer av funktioner i form av ord, funktionsuttryck, tabeller och grafer.
    Mat  -
  • Skillnader mellan begreppen ekvation, olikhet, algebraiskt uttryck och funktion.
    Mat  -
  • Granskning av hur statistiska metoder och resultat används i samhället och inom vetenskap.
    Mat  -
  • Begreppen beroende och oberoende händelser samt metoder för beräkning av sannolikheter vid slumpförsök i flera steg med exempel från spel och risk- och säkerhetsbedömningar.
    Mat  -
  • Strategier för matematisk problemlösning inklusive modellering av olika situationer, såväl med som utan digtiala verktyg och programmering
    Mat  -
  • Matematiska problem av betydelse för privatekonomi, samhällsliv och tillämpningar i andra ämnen.
    Mat  -
  • Matematiska problem med anknytning till matematikens kulturhistoria.
    Mat  -
  • Kunskapskrav
  • Eleven kan utförligt beskriva innebörden av centrala begrepp med hjälp av flera representationer samt utförligt beskriva sambanden mellan begreppen. Dessutom växlar eleven med säkerhet mellan olika representationer. Eleven kan med säkerhet använda begrepp och samband mellan begrepp för att lösa komplexa matematiska problem och problemsituationer i karaktärsämnena. I arbetet hanterar eleven flera procedurer och löser uppgifter av standardkaraktär med säkerhet och på ett effektivt sätt, både utan och med digitala verktyg.
    Mat  A
  • Eleven kan utförligt beskriva innebörden av centrala begrepp med hjälp av några representationer samt utförligt beskriva sambanden mellan begreppen. Dessutom växlar eleven med viss säkerhet mellan olika representationer. Eleven kan med viss säkerhet använda begrepp och samband mellan begrepp för att lösa matematiska problem och problemsituationer i karaktärsämnena. I arbetet hanterar eleven flera procedurer och löser uppgifter av standardkaraktär med säkerhet, både utan och med digitala verktyg.
    Mat  C
  • Eleven kan översiktligt beskriva innebörden av centrala begrepp med hjälp av några representationer samt översiktligt beskriva sambanden mellan begreppen. Dessutom växlar eleven med viss säkerhet mellan olika representationer. Eleven kan med viss säkerhet använda begrepp och samband mellan begrepp för att lösa matematiska problem och problemsituationer i karaktärsämnena i bekanta situationer. I arbetet hanterar eleven några enkla procedurer och löser uppgifter av standardkaraktär med viss säkerhet, både utan och med digitala verktyg.
    Mat  E
  • Eleven kan formulera, analysera och lösa matematiska problem av komplex karaktär. Dessa problem inkluderar flera begrepp och kräver avancerade tolkningar. I problemlösning upptäcker eleven generella samband som presenteras med symbolisk algebra. I arbetet gör eleven om realistiska problemsituationer till matematiska formuleringar genom att välja, tillämpa och anpassa matematiska modeller. Eleven kan utvärdera med nyanserade omdömen resultatets rimlighet samt valda modeller, strategier, metoder och alternativ till dem.
    Mat  A
  • Eleven kan formulera, analysera och lösa matematiska problem. Dessa problem inkluderar flera begrepp och kräver avancerade tolkningar. I arbetet gör eleven om realistiska problemsituationer till matematiska formuleringar genom att välja och tillämpa matematiska modeller. Eleven kan med enkla omdömen utvärdera resultatets rimlighet samt valda modeller, strategier, metoder och alternativ till dem.
    Mat  C
  • Eleven kan formulera, analysera och lösa matematiska problem av enkel karaktär. Dessa problem inkluderar ett fåtal begrepp och kräver enkla tolkningar. I arbetet gör eleven om realistiska problemsituationer till matematiska formuleringar genom att tillämpa givna matematiska modeller. Eleven kan med enkla omdömen utvärdera resultatets rimlighet samt valda modeller, strategier och metoder.
    Mat  E
  • Eleven kan föra välgrundade och nyanserade matematiska resonemang, värdera med nyanserade omdömen och vidareutveckla egna och andras resonemang samt skilja mellan gissningar och välgrundade påståenden. Dessutom uttrycker sig eleven med säkerhet i tal, skrift och i handling samt använder matematiska symboler och andra representationer med god anpassning till syfte och situation.
    Mat  A
  • Eleven kan föra välgrundade matematiska resonemang och värdera med nyanserade omdömen egna och andras resonemang samt skilja mellan gissningar och välgrundade påståenden. Dessutom uttrycker sig eleven med viss säkerhet i tal, skrift och handling samt använder matematiska symboler och andra representationer med viss anpassning till syfte och situation.
    Mat  C
  • Eleven kan föra enkla matematiska resonemang och värdera med enkla omdömen egna och andras resonemang samt skilja mellan gissningar och välgrundade påståenden. Dessutom uttrycker sig eleven med viss säkerhet i tal, skrift och handling med inslag av matematiska symboler och andra representationer.
    Mat  E
  • Genom att ge exempel relaterar eleven något i några av kursens delområden till dess betydelse inom andra ämnen, yrkesliv, samhällsliv och matematikens kulturhistoria. Dessutom kan eleven föra välgrundade och nyanserade resonemang om exemplens relevans.
    Mat  A
  • Genom att ge exempel relaterar eleven något i några av kursens delområden till dess betydelse inom andra ämnen, yrkesliv, samhällsliv och matematikens kulturhistoria. Dessutom kan eleven föra välgrundade resonemang om exemplens relevans.
    Mat  C
  • Genom att ge exempel relaterar eleven något i kursens innehåll till dess betydelse inom andra ämnen, yrkesliv, samhällsliv och matematikens kulturhistoria. Dessutom kan eleven föra enkla resonemang om exemplens relevans.
    Mat  E