👋🏼Vi håller på att göra om Skolbanken med nytt gränssnitt och nya förbättrade funktioner! Ta en smygtitt på Nya Skolbanken här

Skolbanken – inspiration och utveckling från hela landet

Matematik åk 9:1

Skapad 2020-11-16 15:46 i Årstaskolan Stockholm Grundskolor
Grundskola 9 Matematik
I det här kapitlet kommer vi att arbeta med samband, funktioner och procentuella förändringar.

Innehåll

Lärande mål

Du ska kunna

·         Begreppen funktion och linjär funktion

·         Tolka linjära funktioner med ord, grafer och formler

·         Formler som beskriver linjära funktioner, proportionaliteter

·         Räta linjens ekvation

·         Procentuell förändring

 

Begrepp du ska kunna

Variabel

Funktion

Graf

Linjär funktion

Proportionalitet

Räta linjens ekvation

Procent

Förändringsfaktor

Procentuell förändring

Veckoplanering

Vecka

Det här ska du lära dig under veckan

Läxa

47

2.1 Vad är en funktion?

Träna inför NP, C -prov

 

48

2.2 Linjära funktioner

Träna inför NP Muntligt 

Grafer i koordinatsystem

 

49

Nationella prov matematik (muntligt) ti-to

Repetition, kap: 2.1, 2.2, 

 

50

2.3 Räta linjens ekvation

2.4 Procentuell förändring

Räta linjens ekvation

 

51

2.5 Upprepad procentuell förändring

 

2

Repetition, hela kap. 2

Begreppstest, Kapiteltest

Basläger/Hög höjd/ blandade uppgifter

Förändringsfaktor

3

Repetition/fördjupning

Prov 22/1

Repetitionsuppgifter

 

Arbetssätt, arbetsformer

 

·         Gemensamma genomgångar

 

·         Enskilt arbete

 

·         Problemlösning i grupp/redovisning

 

·         Gruppdiskussioner

 

Bedömning av förmågor/kunskaper grundar sig på

 

·        Lektionsaktiviteter som exempelvis genomgångar med diskussioner, enskilt eller i grupp

·         Redovisningar

·         Inlämningsuppgifter

·        Prov/test

 

 

  

 

 

 

 

 

Kopplingar till läroplanen

  • Syfte
  • formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
    Ma
  • använda och analysera matematiska begrepp och samband mellan begrepp,
    Ma
  • välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter,
    Ma
  • föra och följa matematiska resonemang, och
    Ma
  • använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser.
    Ma
  • Centralt innehåll
  • Procent för att uttrycka förändring och förändringsfaktor samt beräkningar med procent i vardagliga situationer och i situationer inom olika ämnesområden.
    Ma  7-9
  • Funktioner och räta linjens ekvation. Hur funktioner kan användas för att, såväl med som utan digitala verktyg, undersöka förändring, förändringstakt och samband.
    Ma  7-9
  • Strategier för problemlösning i vardagliga situationer och inom olika ämnesområden samt värdering av valda strategier och metoder.
    Ma  7-9
  • Matematisk formulering av frågeställningar utifrån vardagliga situationer och olika ämnesområden.
    Ma  7-9
  • Enkla matematiska modeller och hur de kan användas i olika situationer.
    Ma  7-9

Matriser

Ma
Matematik 7-9

Kunskapskrav för betyget E
Kunskapskrav för betyget C
Kunskapskrav för betyget A
Lösa problem med strategier & metoder
Eleven kan lösa enkla problem i elevnära situationer på ett i huvudsak fungerande sätt genom att välja och använda strategier och metoder med viss anpassning till problemets karaktär.
Eleven kan lösa enkla problem i elevnära situationer på ett relativt väl fungerande sätt genom att välja och använda strategier och metoder med förhållandevis god anpassning till problemets karaktär.
Eleven kan lösa enkla problem i elevnära situationer på ett välfungerande sätt genom att välja och använda strategier och metoder med god anpassning till problemets karaktär.
Beskriva tillvägagångssätt & resonera om rimlighet
Eleven beskriver tillvägagångssätt på ett i huvudsak fungerande sätt och för enkla och till viss del underbyggda resonemang om resultatens rimlighet i förhållande till problemsituationen samt kan bidra till att ge något förslag på alternativt tillvägagångssätt.
Eleven beskriver tillvägagångssätt på ett relativt väl fungerande sätt och för utvecklade och relativt väl underbyggda resonemang om resultatens rimlighet i förhållande till problemsituationen samt kan ge något förslag på alternativt tillvägagångssätt.
Eleven beskriver tillvägagångssätt på ett välfungerande sätt och för välutvecklade och väl underbyggda resonemang om resultatens rimlighet i förhållande till problemsituationen samt kan ge förslag på alternativa tillvägagångssätt.
Använda matematiska begrepp
Eleven har grundläggande kunskaper om matematiska begrepp och visar det genom att använda dem i välkända sammanhang på ett i huvudsak fungerande sätt.
Eleven har goda kunskaper om matematiska begrepp och visar det genom att använda dem i bekanta sammanhang på ett relativt väl fungerande sätt.
Eleven har mycket goda kunskaper om matematiska begrepp och visar det genom att använda dem i nya sammanhang på ett väl fungerande sätt.
Matematiska uttrycksformer
Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett i huvudsak fungerande sätt.
Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett relativt väl fungerande sätt
Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett väl fungerande sätt.
Växla uttrycksform & resonera om begreppens relation
I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra enkla resonemang kring hur begreppen relaterar till varandra.
I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra utvecklade resonemang kring hur begreppen relaterar till varandra.
I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra välutvecklade resonemang kring hur begreppen relaterar till varandra.
Välja & använda matematiska metoder
Eleven kan välja och använda i huvudsak fungerande matematiska metoder med viss anpassning till sammanhanget för att göra enkla beräkningar och lösa enkla rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med tillfredställande resultat.
Eleven kan välja och använda ändamålsenliga matematiska metoder med relativt god anpassning till sammanhanget för att göra enkla beräkningar och lösa enkla rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med gott resultat.
Eleven kan välja och använda ändamålsenliga och effektiva matematiska metoder med god anpassning till sammanhanget för att göra enkla beräkningar och lösa enkla rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med mycket gott resultat.
Redogöra för & samtala om tillvägagångssätt
Eleven kan redogöra för och samtala om tillvägagångssätt på ett i huvudsak fungerande sätt och använder då bilder, symboler, tabeller, grafer och andra matematiska uttrycksformer med viss anpassning till sammanhanget.
Eleven kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt sätt och använder då bilder, symboler, tabeller, grafer och andra matematiska uttrycksformer med förhållandevis god anpassning till sammanhanget.
Eleven kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt och effektivt sätt och använder då bilder, symboler, tabeller, grafer och andra matematiska uttrycksformer med god anpassning till sammanhanget.
Föra och följa matematiska resonemang
I redovisningar och samtal kan eleven föra och följa matematiska resonemang genom att ställa frågor och framföra och bemöta matematiska argument på ett sätt som till viss del för resonemangen framåt.
I redovisningar och samtal kan eleven föra och följa matematiska resonemang genom att ställa frågor och framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt.
I redovisningar och samtal kan eleven föra och följa matematiska resonemang genom att ställa frågor och framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt och fördjupar eller breddar dem.