Skolbanken – inspiration och utveckling från hela landet

Favorit matematik 4B

Skapad 2021-02-15 17:15 i Växthusets skola Uppsala
Terminsplanering med utgångspunkt från Favorit Matematik åk 4
Grundskola 4 – 5 Matematik
Under våren kommer vi bland annat att arbeta med de följande områdena; bråktal och decimaltal, längd, vikt och volymenheter, avrunda tal samt parallella linjer och koordinatsystem. Detta gör vi med stöd av boken Favorit matematik 4B samt Mera Favorit matematik 4B. Vi kommer också arbeta med matematik ute med praktiska övningar.

Innehåll

Beskrivning av arbetsområde

Genom undervisningen ska du ges förutsättningar att utveckla förtrogenhet med grundläggande matematiska begrepp och metoder och deras användbarhet.

Målet med undervisningen är att du utvecklar olika förmågor:

Problemlösningsförmåga

  • kunna lösa problem i elevnära situationer                                                                                                        
  • kunna använda olika strategier och metoder som passar problemet                                                                  
  • kunna se om ditt tal är rimligt                                                                                                                            
  • kunna använda alternativa lösningar på samma problem                                                                    

Begreppsförmåga                                                                                                            

  • kunna beskriva olika begrepp med matematiska uttrycksformer                                                                        
  • kunna växla mellan olika uttrycksformer och visa hur olika begrepp relaterar till varandra                    

Metodförmåga                                                                                                                                                       

  • kunna välja och använda matematiska metoder för att lösa rutinuppgifter                                                          
  • kunna använda miniräknare                                                                                                              

Kommunikationsförmåga  

  • kunna använda bilder, symboler, tabeller, grafer och andra matematiska uttrycksformer                                    
  • kunna redovisa, samtala, ställa frågor och bemöta matematiska argument                                                                                                             

Så här kommer vi att arbeta

Vi kommer att ha gemensamma genomgångar och arbeta kooperativt i klassen. Vi kommer att arbeta med matematikboken Favorit matematik 4B och Mera Favorit matematik 4B, problemlösningsuppgifter, extrablad, digitala verktyg samt ute. Efter varje avslutat område gör vi en diagnos. 

Du kommer att få undervisning om:

  • Bråktal
  • Decimaltal
  • Addition och subtraktion av decimaltal med uppställning.
  • Längdenheter - millimeter till meter, meter till kilometer 
  • Viktenheter - gram till kilogram
  • Volymenheter - milliliter till liter
  • Talluppfattning - tio och hundra tusental
  • Avrunda till närmaste tusental
  • Parallella linjer
  • Koordinatsystem

 Detta ska bedömas :

Jag kommer att bedöma ditt arbete med de matematiska förmågorna under lektionerna i samtal med andra, ditt arbete i boken och på arbetsblad samt genom diagnoser och små tester förutom den praktiska matematiken vi gör ute.

Kopplingar till läroplanen

  • Syfte
  • formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
    Ma
  • använda och analysera matematiska begrepp och samband mellan begrepp,
    Ma
  • välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter,
    Ma
  • föra och följa matematiska resonemang, och
    Ma
  • använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser.
    Ma
  • Centralt innehåll
  • Centrala metoder för beräkningar med naturliga tal och enkla tal i decimalform vid överslagsräkning, huvudräkning samt vid beräkningar med skriftliga metoder och digitala verktyg. Metodernas användning i olika situationer.
    Ma  4-6
  • Rimlighetsbedömning vid uppskattningar och beräkningar i vardagliga situationer.
    Ma  4-6
  • Enkla algebraiska uttryck och ekvationer i situationer som är relevanta för eleven.
    Ma  4-6
  • Metoder för enkel ekvationslösning.
    Ma  4-6
  • Tabeller och diagram för att beskriva resultat från undersökningar, såväl med som utan digitala verktyg. Tolkning av data i tabeller och diagram.
    Ma  4-6
  • Strategier för matematisk problemlösning i vardagliga situationer.
    Ma  4-6
  • Matematisk formulering av frågeställningar utifrån vardagliga situationer.
    Ma  4-6

Matriser

Ma
Kunskapskrav matematik åk 4-6

F (insats krävs)
E
C
A
Lösa problem med strategier & metoder
Eleven når ännu inte upp till alla delar i detta kunskapskrav för E.
Eleven kan lösa enkla problem i elevnära situationer på ett i huvudsak fungerande sätt genom att välja och använda strategier och metoder med viss anpassning till problemets karaktär.
Eleven kan lösa enkla problem i elevnära situationer på ett relativt väl fungerande sätt genom att välja och använda strategier och metoder med förhållandevis god anpassning till problemets karaktär.
Eleven kan lösa enkla problem i elevnära situationer på ett välfungerande sätt genom att välja och använda strategier och metoder med god anpassning till problemets karaktär.
Beskriva tillvägagångssätt & resonera om rimlighet
Eleven når ännu inte upp till alla delar i detta kunskapskrav för E.
Eleven beskriver tillvägagångssätt på ett i huvudsak fungerande sätt och för enkla och till viss del underbyggda resonemang om resultatens rimlighet i förhållande till problemsituationen samt kan bidra till att ge något förslag på alternativt tillvägagångssätt.
Eleven beskriver tillvägagångssätt på ett relativt väl fungerande sätt och för utvecklade och relativt väl underbyggda resonemang om resultatens rimlighet i förhållande till problemsituationen samt kan ge något förslag på alternativt tillvägagångssätt.
Eleven beskriver tillvägagångssätt på ett välfungerande sätt och för välutvecklade och väl underbyggda resonemang om resultatens rimlighet i förhållande till problemsituationen samt kan ge förslag på alternativa tillvägagångssätt.
Använda matematiska begrepp
Eleven når ännu inte upp till alla delar i detta kunskapskrav för E.
Eleven har grundläggande kunskaper om matematiska begrepp och visar det genom att använda dem i välkända sammanhang på ett i huvudsak fungerande sätt.
Eleven har goda kunskaper om matematiska begrepp och visar det genom att använda dem i bekanta sammanhang på ett relativt väl fungerande sätt.
Eleven har mycket goda kunskaper om matematiska begrepp och visar det genom att använda dem i nya sammanhang på ett väl fungerande sätt.
Matematiska uttrycksformer
Eleven når ännu inte upp till alla delar i detta kunskapskrav för E.
Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett i huvudsak fungerande sätt.
Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett relativt väl fungerande sätt
Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett väl fungerande sätt.
Växla uttrycksform & resonera om begreppens relation
Eleven når ännu inte upp till alla delar i detta kunskapskrav för E.
I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra enkla resonemang kring hur begreppen relaterar till varandra.
I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra utvecklade resonemang kring hur begreppen relaterar till varandra.
I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra välutvecklade resonemang kring hur begreppen relaterar till varandra.
Välja & använda matematiska metoder
Eleven når ännu inte upp till alla delar i detta kunskapskrav för E.
Eleven kan välja och använda i huvudsak fungerande matematiska metoder med viss anpassning till sammanhanget för att göra enkla beräkningar och lösa enkla rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med tillfredställande resultat.
Eleven kan välja och använda ändamålsenliga matematiska metoder med relativt god anpassning till sammanhanget för att göra enkla beräkningar och lösa enkla rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med gott resultat.
Eleven kan välja och använda ändamålsenliga och effektiva matematiska metoder med god anpassning till sammanhanget för att göra enkla beräkningar och lösa enkla rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med mycket gott resultat.
Redogöra för & samtala om tillvägagångssätt
Eleven når ännu inte upp till alla delar i detta kunskapskrav för E.
Eleven kan redogöra för och samtala om tillvägagångssätt på ett i huvudsak fungerande sätt och använder då bilder, symboler, tabeller, grafer och andra matematiska uttrycksformer med viss anpassning till sammanhanget.
Eleven kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt sätt och använder då bilder, symboler, tabeller, grafer och andra matematiska uttrycksformer med förhållandevis god anpassning till sammanhanget.
Eleven kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt och effektivt sätt och använder då bilder, symboler, tabeller, grafer och andra matematiska uttrycksformer med god anpassning till sammanhanget.
Föra och följa matematiska resonemang
Eleven når ännu inte upp till alla delar i detta kunskapskrav för E.
I redovisningar och samtal kan eleven föra och följa matematiska resonemang genom att ställa frågor och framföra och bemöta matematiska argument på ett sätt som till viss del för resonemangen framåt.
I redovisningar och samtal kan eleven föra och följa matematiska resonemang genom att ställa frågor och framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt.
I redovisningar och samtal kan eleven föra och följa matematiska resonemang genom att ställa frågor och framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt och fördjupar eller breddar dem.
Beröm eller ge feedback på det här materialet genom att skriva en kommentar här: