👋🏼 Var med och förbättra Skolbanken med oss på Unikum. Svara på formuläret här

Skolbanken – inspiration och utveckling från hela landet

Matematik 1b, kap 4 och 5

Skapad 2021-02-16 10:24 i S:t Lars gymnasium Linköping
Gymnasieskola Matematik
Matematik 1b, kap 4 och 5. Geometri samt Sannolikhet och statistik.

Innehåll

Kapitel 4 handlar om geometri och kap 5 om sannolikhet och statistik. I slutet av området blir ett gemensamt prov på kap 4 och 5. Detta prov kommer att vara på måndag v.11.

Tidsplan:

Planering Ma1b- rekommenderade uppgifter

v.4 Gå igenom provet, räkna själva s 191-209 (repetition från grundskolan: gör så mycket du behöver)
4204,4207,4208,4209,4211,4214,4215(4216,4217)

v.5 (4220,4221,4222,4224,4227,4228,4229)  4231     4236,4237,4239,4242,4243(4246,4247)
4320,4321,4322,4324,4325,4326,4327,4328,4329(4331)                                              Läxa: s.226-227

v.6 5102,5103,5104,5106,5108,5109,5111,5112,5115,5116,5118(5119,5120,5121)
5123,5126,5127,5130,5131             5203,5204,5206,5207 (5209)

v.7 5213,5214,5216,5218,5219,5220,5221,5222,5223(5226)
5228,5230,5231(5233)           5235,5236,5239,5241(5242,5243,5245)

v.8 SPORTLOV

v.9 5303,5304,5306,5307,5308,5312(5313,5314)
5318,5319,5321,5322,5323,5326(5328)       5338,5340,5341

v.10 Blandade övningar kap 4 och kap 5
Blandade övningar kap 4 och 5

v.11 Prov kap 4 och 5

Uppgifter

  • Prov kap 4 och 5

Kopplingar till läroplanen

  • Centralt innehåll
  • Begreppet symmetri och olika typer av symmetriska transformationer av figurer i planet samt symmetriers förekomst i naturen och i konst från olika kulturer.
    Mat  -
  • Representationer av geometriska objekt och symmetrier med ord, praktiska konstruktioner och estetiska uttryckssätt.
    Mat  -
  • Matematisk argumentation med hjälp av grundläggande logik inklusive implikation och ekvivalens samt jämförelser med hur man argumenterar i vardagliga sammanhang och inom olika ämnesområden.
    Mat  -
  • Illustration av begreppen definition, sats och bevis, till exempel med Pythagoras sats och triangelns vinkelsumma.
    Mat  -
  • Granskning av hur statistiska metoder och resultat används i samhället och inom vetenskap.
    Mat  -
  • Begreppen beroende och oberoende händelser samt metoder för beräkning av sannolikheter vid slumpförsök i flera steg med exempel från spel och risk- och säkerhetsbedömningar.
    Mat  -
  • Strategier för matematisk problemlösning inklusive modellering av olika situationer, såväl med som utan digitala verktyg.
    Mat  -
  • Matematiska problem av betydelse för privatekonomi, samhällsliv och tillämpningar i andra ämnen.
    Mat  -
  • Kunskapskrav
  • Eleven kan utförligt beskriva innebörden av centrala begrepp med hjälp av flera representationer samt utförligt beskriva sambanden mellan begreppen. Dessutom växlar eleven med säkerhet mellan olika representationer. Eleven kan med säkerhet använda begrepp och samband mellan begrepp för att lösa komplexa matematiska problem och problemsituationer i karaktärsämnena. I arbetet hanterar eleven flera procedurer och löser uppgifter av standardkaraktär med säkerhet och på ett effektivt sätt, både utan och med digitala verktyg.
    Mat  A
  • Eleven kan utförligt beskriva innebörden av centrala begrepp med hjälp av några representationer samt utförligt beskriva sambanden mellan begreppen. Dessutom växlar eleven med viss säkerhet mellan olika representationer. Eleven kan med viss säkerhet använda begrepp och samband mellan begrepp för att lösa matematiska problem och problemsituationer i karaktärsämnena. I arbetet hanterar eleven flera procedurer och löser uppgifter av standardkaraktär med säkerhet, både utan och med digitala verktyg.
    Mat  C
  • Eleven kan översiktligt beskriva innebörden av centrala begrepp med hjälp av några representationer samt översiktligt beskriva sambanden mellan begreppen. Dessutom växlar eleven med viss säkerhet mellan olika representationer. Eleven kan med viss säkerhet använda begrepp och samband mellan begrepp för att lösa matematiska problem och problemsituationer i karaktärsämnena i bekanta situationer. I arbetet hanterar eleven några enkla procedurer och löser uppgifter av standardkaraktär med viss säkerhet, både utan och med digitala verktyg.
    Mat  E
  • Eleven kan formulera, analysera och lösa matematiska problem. Dessa problem inkluderar flera begrepp och kräver avancerade tolkningar. I arbetet gör eleven om realistiska problemsituationer till matematiska formuleringar genom att välja och tillämpa matematiska modeller. Eleven kan med enkla omdömen utvärdera resultatets rimlighet samt valda modeller, strategier, metoder och alternativ till dem.
    Mat  C
  • Eleven kan föra välgrundade och nyanserade matematiska resonemang, värdera med nyanserade omdömen och vidareutvecklar egna och andras resonemang samt skilja mellan gissningar och välgrundade påståenden. Dessutom uttrycker sig eleven med säkerhet i tal, skrift och i handling samt använder matematiska symboler och andra representationer med god anpassning till syfte och situation.
    Mat  A
  • Eleven kan föra välgrundade matematiska resonemang och värdera med nyanserade omdömen egna och andras resonemang samt skilja mellan gissningar och välgrundade påståenden. Dessutom uttrycker sig eleven med viss säkerhet i tal, skrift och handling samt använder matematiska symboler och andra representationer med viss anpassning till syfte och situation.
    Mat  C
  • Eleven kan föra enkla matematiska resonemang och värdera med enkla omdömen egna och andras resonemang samt skilja mellan gissningar och välgrundade påståenden. Dessutom uttrycker sig eleven med viss säkerhet i tal, skrift och handling med inslag av matematiska symboler och andra representationer.
    Mat  E

Matriser

Mat
Matematik 1b

E
C
A
Kunskapskrav 1
Eleven kan...
Eleven kan översiktligt beskriva innebörden av centrala begrepp med hjälp av några representationer samt översiktligt beskriva sambanden mellan begreppen. Dessutom växlar eleven med viss säkerhet mellan olika representationer. Eleven kan med viss säkerhet använda begrepp och samband mellan begrepp för att lösa matematiska problem och problemsituationer i karaktärsämnena i bekanta situationer. I arbetet hanterar eleven några enkla procedurer och löser uppgifter av standardkaraktär med viss säkerhet, både utan och med digitala verktyg.
Eleven kan utförligt beskriva innebörden av centrala begrepp med hjälp av några representationer samt utförligt beskriva sambanden mellan begreppen. Dessutom växlar eleven med viss säkerhet mellan olika representationer. Eleven kan med viss säkerhet använda begrepp och samband mellan begrepp för att lösa matematiska problem och problemsituationer i karaktärsämnena. I arbetet hanterar eleven flera procedurer och löser uppgifter av standardkaraktär med säkerhet, både utan och med digitala verktyg.
Eleven kan utförligt beskriva innebörden av centrala begrepp med hjälp av flera representationer samt utförligt beskriva sambanden mellan begreppen. Dessutom växlar eleven med säkerhet mellan olika representationer. Eleven kan med säkerhet använda begrepp och samband mellan begrepp för att lösa komplexa matematiska problem och problemsituationer i karaktärsämnena. I arbetet hanterar eleven flera procedurer och löser uppgifter av standardkaraktär med säkerhet och på ett effektivt sätt, både utan och med digitala verktyg.
Kunskapskrav 2
Eleven kan formulera, analysera och...
Eleven kan formulera, analysera och lösa matematiska problem av enkel karaktär. Dessa problem inkluderar ett fåtal begrepp och kräver enkla tolkningar. I arbetet gör eleven om realistiska problemsituationer till matematiska formuleringar genom att tillämpa givna matematiska modeller. Eleven kan med enkla omdömen utvärdera resultatets rimlighet samt valda modeller, strategier och metoder.
Eleven kan formulera, analysera och lösa matematiska problem. Dessa problem inkluderar flera begrepp och kräver avancerade tolkningar. I arbetet gör eleven om realistiska problemsituationer till matematiska formuleringar genom att välja och tillämpa matematiska modeller. Eleven kan med enkla omdömen utvärdera resultatets rimlighet samt valda modeller, strategier, metoder och alternativ till dem.
Eleven kan formulera, analysera och lösa matematiska problem av komplex karaktär. Dessa problem inkluderar flera begrepp och kräver avancerade tolkningar. I problemlösning upptäcker eleven generella samband som presenteras med symbolisk algebra. I arbetet gör eleven om realistiska problemsituationer till matematiska formuleringar genom att välja, tillämpa och anpassa matematiska modeller. Eleven kan med nyanserade omdömen utvärdera resultatets rimlighet samt valda modeller, strategier, metoder och alternativ till dem.
Kunskapskrav 3
Eleven kan föra...
Eleven kan föra enkla matematiska resonemang och värdera med enkla omdömen egna och andras resonemang samt skilja mellan gissningar och välgrundade påståenden. Dessutom uttrycker sig eleven med viss säkerhet i tal, skrift och handling med inslag av matematiska symboler och andra representationer.
Eleven kan föra välgrundade matematiska resonemang och värdera med nyanserade omdömen egna och andras resonemang samt skilja mellan gissningar och välgrundade påståenden. Dessutom uttrycker sig eleven med viss säkerhet i tal, skrift och handling samt använder matematiska symboler och andra representationer med viss anpassning till syfte och situation.
Eleven kan föra välgrundade och nyanserade matematiska resonemang, värdera med nyanserade omdömen och vidareutvecklar egna och andras resonemang samt skilja mellan gissningar och välgrundade påståenden. Dessutom uttrycker sig eleven med säkerhet i tal, skrift och i handling samt använder matematiska symboler och andra representationer med god anpassning till syfte och situation.