Skolbanken – inspiration och utveckling från hela landet

SAMBAND åk 8

Skapad 2021-02-18 17:13 i Gränbyskolan Uppsala
Samband Kapitel 4 - Matte Direkt åk 8
Grundskola 8 Matematik
Jordytan är indelad i ett rutnät, längdgrader och breddgrader. Rutnätet bildar ett koordinatsystem. I det här kapitlet får du lära dig mer om koordinatsystem och att tolka och beskriva olika typer av samband.

Innehåll

Ämnesmål

När du arbetar med det här kapitlet får du lära dig att

  • tolka olika typer av samband.
  • beskriva linjära samband med hjälp av tabeller, diagram och formler.
  • beskriva proportionella samband.

Begrepp: koordinatsystem, x-axel, y-axel, origo, koordinat, tabell, diagram, graf, lutning, formel, linjära samband, proportionell, proportionalitet, hastighet

 

Arbetsformer

  • Lärarledda genomgångar
  • Digitala genomgångar (videoklipp i Teams)
  • Eget arbete- enskilt och i grupp- lektionstid
  • Samtal och diskussioner i grupp/ klass
  • Problemlösning, enskilt, i par och i grupp
  • NOMP- uppdrag och utmaningar
  • Praktiska övningar, i par och i grupp

 

Bedömning

  • Begreppstest
  • Muntlig redovisning av bedömningsuppgift

 

Jag bedömer din förmåga att:

-lösa problem vid till exempel par/grupparbeten, deltagande i diskussioner och samtal under lektionstid, bedömningsuppgifter 

- muntligen föra och följa matematiska resonemang samt använda matematiska begrepp vid dagligt arbete, samtal under lektionstid och bedömningsuppgifter 

använda dig av matematiska metoder genom till exempel "exit-tickets", whiteboardtavlor, presentationer och bedömningsuppgifter 

använda matematiska uttrycksformer (hur du kommunicerar) vid diskussioner och samtal under lektionstid, presentationer och bedömningsuppgifter.

 

Videoklipp

Kopplingar till läroplanen

  • Syfte
  • formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
    Ma
  • använda och analysera matematiska begrepp och samband mellan begrepp,
    Ma
  • välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter,
    Ma
  • föra och följa matematiska resonemang, och
    Ma
  • använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser.
    Ma
  • Centralt innehåll
  • Rimlighetsbedömning vid uppskattningar och beräkningar i vardagliga och matematiska situationer och inom andra ämnesområden.
    Ma  7-9
  • Funktioner och räta linjens ekvation. Hur funktioner kan användas för att, såväl med som utan digitala verktyg, undersöka förändring, förändringstakt och samband.
    Ma  7-9
  • Strategier för problemlösning i vardagliga situationer och inom olika ämnesområden samt värdering av valda strategier och metoder.
    Ma  7-9
  • Matematisk formulering av frågeställningar utifrån vardagliga situationer och olika ämnesområden.
    Ma  7-9
  • Enkla matematiska modeller och hur de kan användas i olika situationer.
    Ma  7-9
  • Hur algoritmer kan skapas, testas och förbättras vid programmering för matematisk problemlösning.
    Ma  7-9

Matriser

Ma
Kunskapskrav matematik åk 7-9

Problemlösning

  • Ma   formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
F (insats krävs)
E
C
A
Lösa problem med strategier, metoder & modeller
Eleven når ännu inte upp till alla delar i detta kunskapskrav för E.
Eleven kan lösa olika problem i bekanta situationer på ett i huvudsak fungerande sätt genom att välja och använda strategier och metoder med viss anpassning till problemets karaktär samt bidra till att formulera enkla matematiska modeller som kan tillämpas i sammanhanget.
Eleven kan lösa olika problem i bekanta situationer på ett relativt väl fungerande sätt genom att välja och använda strategier och metoder med förhållandevis god anpassning till problemets karaktär samt formulera enkla matematiska modeller som efter någon bearbetning kan tillämpas i sammanhanget.
Eleven kan lösa olika problem i bekanta situationer på ett välfungerande sätt genom att välja och använda strategier och metoder med god anpassning till problemets karaktär samt formulera enkla matematiska modeller som kan tillämpas i sammanhanget.
Resonemang om tillvägagångssätt & rimlighet
Eleven når ännu inte upp till alla delar i detta kunskapskrav för E.
Eleven för enkla och till viss del underbyggda resonemang om val av tillvägagångssätt och om resultatens rimlighet i förhållande till problemsituationen samt kan bidra till att ge något förslag på alternativt tillvägagångssätt.
Eleven för utvecklade och relativt väl underbyggda resonemang om tillvägagångssätt och om resultatens rimlighet i förhållande till problemsituationen samt kan ge något förslag på alternativt tillvägagångssätt.
Eleven för välutvecklade och väl underbyggda resonemang om tillvägagångssätt och om resultatens rimlighet i förhållande till problemsituationen samt kan ge förslag på alternativa tillvägagångssätt.

Begrepp

  • Ma   använda och analysera matematiska begrepp och samband mellan begrepp,
F (insats krävs)
E
C
A
Använda matematiska begrepp
Eleven når ännu inte upp till alla delar i detta kunskapskrav för E.
Eleven har grundläggande kunskaper om matematiska begrepp och visar det genom att använda dem i välkända sammanhang på ett i huvudsak fungerande sätt.
Eleven har goda kunskaper om matematiska begrepp och visar det genom att använda dem i bekanta sammanhang på ett relativt väl fungerande sätt.
Eleven har mycket goda kunskaper om matematiska begrepp och visar det genom att använda dem i nya sammanhang på ett väl fungerande sätt.
Beskriva med matematiska uttrycksformer
Eleven når ännu inte upp till alla delar i detta kunskapskrav för E.
Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett i huvudsak fungerande sätt.
Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett relativt väl fungerande sätt.
Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett väl fungerande sätt.
Uttrycksformer & begreppens relation
Eleven når ännu inte upp till alla delar i detta kunskapskrav för E.
I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra enkla resonemang kring hur begreppen relaterar till varandra.
I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra utvecklade resonemang kring hur begreppen relaterar till varandra.
I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra välutvecklade resonemang kring hur begreppen relaterar till varandra.

Metod

  • Ma   välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter,
F (insats krävs)
E
C
A
Välja och använda matematiska metoder
Eleven når ännu inte upp till alla delar i detta kunskapskrav för E.
Eleven kan välja och använda i huvudsak fungerande matematiska metoder med viss anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med tillfredställande resultat.
Eleven kan välja och använda ändamålsenliga matematiska metoder med relativt god anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med gott resultat.
Eleven kan välja och använda ändamålsenliga och effektiva matematiska metoder med god anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med mycket gott resultat.

Kommunikation

  • Ma   föra och följa matematiska resonemang, och
F (insats krävs)
E
C
A
Redogöra för & samtala om tillvägagångssätt
Eleven når ännu inte upp till alla delar i detta kunskapskrav för E.
Eleven kan redogöra för och samtala om tillvägagångssätt på ett i huvudsak fungerande sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer med viss anpassning till syfte och sammanhang.
Eleven kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer med förhållandevis god anpassning till syfte och sammanhang.
Eleven kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt och effektivt sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer med god anpassning till syfte och sammanhang.

Resonemang

  • Ma   använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser.
F (insats krävs)
E
C
A
Framföra och bemöta matematiska argument i resonemang
Eleven når ännu inte upp till alla delar i detta kunskapskrav för E.
I redovisningar och diskussioner för och följer eleven matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som till viss del för resonemangen framåt.
I redovisningar och diskussioner för och följer eleven matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt.
I redovisningar och diskussioner för och följer eleven matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt och fördjupar eller breddar dem.
Beröm eller ge feedback på det här materialet genom att skriva en kommentar här: