👋🏼 Var med och förbättra Skolbanken med oss på Unikum. Svara på formuläret här

Skolbanken – inspiration och utveckling från hela landet

Procent och statistik År 9

Skapad 2022-05-19 09:01 i Vifolkaskolan 7-9 Mjölby
Beräkningar av procent, promille och sannolikhet.
Grundskola 9 Matematik
I detta område kommer du att träna på att utföra beräkningar med procent och statistik.

Innehåll

Syfte - Varför?

Undervisningen i matematik ska syfta till att eleven utvecklar kunskaper i matematik och matematikens användning i vardagen och inom olika ämnesområden. Eleven ska bli förtrogen med grundläggande matematiska begrepp och metoder och hur man kan använda dessa.

Centralt innehåll - Vad?

Efter att ha arbetat med området. Procent och statistik ska du kunna: 

  • förstå och utföra de tre olika typerna av procentberäkningar: beräkna andelen, beräkna delen, beräkna det hela
  • använda procentberäkningar i olika praktiska sammanhang, som till exempel ränteberäkningar och statistik 
  • tolka lådagram och andra typer av diagram
  • skilja på procent och procentenheter
  • räkna med förändringsfaktor
  • räkna med promille

Begrepp

ränta, räntesats, inlåningsränta, förändringsfaktor, spridningsmått, lägesmått, medelvärde, median, typvärde, variationsbredd, lådagram, nedre kvartil, övre kvartil, kvartilavstånd, procentenheter.

Undervisning

Undervisningen kommer att ske utifrån genomgångar, individuellt och i grupp, gruppdiskussioner och eget räknande. Diagnos efter avslutat kapitel.

Bokens kapitel är uppdelat i tre delar: Grön del - grundkursen, Blå del - grundläggande, Röd del - avancerad, Svart del - utmaning.
**********************************

Länkar:

Länkarna nedan skickar dig till en sida där du hittar information att läsa eller titta på. Scrolla ner på sidan så hittar du filmerna!

Andelen, delen och det hela

Ökning och minskning

Förändringsfaktor

Procent och procentenheter

Statistik 

Bedömning

Dina förmågor kommer att bedömas utifrån att: Du förstår och hittar lösningar på problem, du skriftligt och muntligt redovisar dina tankar och slutsatser, du deltar aktivt på lektionerna.

 

Generellt

  • Tänk på att redovisa dina uppgifter ordentligt när du övningsräknar. Gör alltid ordentliga redovisningar och skriv alltid fullständiga svar, det har du igen på proven.
  • Det är viktigare att du förstår matematiken än att du räknar så många tal på så kort tid som möjligt utan att tänka efter och reflektera över betydelsen.
  • Det är DITT ansvar att se till att vara i fas med planeringen om du varit sjuk, ledig eller av annan anledning inte följt planeringen. Det är viktigt att DU frågar om du undrar över någonting. Om du inte får hjälp direkt så hoppa över och räkna vidare eller fråga en kompis.
  • Ta vara på lektionstiden. Ju mer du får gjort på lektionen desto mindre behöver du jobba hemma.
  • Glöm inte bort att matematik är ett språk som måste övas och pluggas in regelbundet!

Uppgifter

  • Prov - Procent och statistik

Kopplingar till läroplanen

  • Syfte
  • formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
    Ma
  • använda och analysera matematiska begrepp och samband mellan begrepp,
    Ma
  • välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutinuppgifter,
    Ma
  • föra och följa matematiska resonemang, och
    Ma
  • använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser.
    Ma
  • Centralt innehåll
  • Likformig sannolikhet och metoder för att beräkna sannolikheten i vardagliga situationer.
    Ma  7-9
  • Hur kombinatoriska principer kan användas i enkla vardagliga och matematiska problem.
    Ma  7-9
  • Bedömningar av risker och chanser utifrån datorsimuleringar och statistiskt material.
    Ma  7-9
  • Procent för att uttrycka förändring och förändringsfaktor samt beräkningar med procent i vardagliga situationer och i situationer inom olika ämnesområden.
    Ma  7-9
  • Strategier för problemlösning i vardagliga situationer och inom olika ämnesområden samt värdering av valda strategier och metoder.
    Ma  7-9
  • Matematisk formulering av frågeställningar utifrån vardagliga situationer och olika ämnesområden.
    Ma  7-9
  • Enkla matematiska modeller och hur de kan användas i olika situationer.
    Ma  7-9

Matriser

Ma
Kunskapskrav i matematik för år 7-9 enl Lgr 11

E
C
A
Problemlösning
Förmågan att formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder.
  • Ma
Eleven kan lösa olika problem i bekanta situationer på ett i huvudsak fungerande sätt genom att välja och använda strategier och metoder med viss anpassning till problemets karaktär samt bidra till att formulera enkla matematiska modeller som kan tillämpas i sammanhanget.
Eleven kan lösa olika problem i bekanta situationer på ett relativt väl fungerande sätt genom att välja och använda strategier och metoder med förhållandevis god anpassning till problemets karaktär samt formulera enkla matematiska modeller som efter någon bearbetning kan tillämpas i sammanhanget.
Eleven kan lösa olika problem i bekanta situationer på ett välfungerande sätt genom att välja och använda strategier och metoder med god anpassning till problemets karaktär samt formulera enkla matematiska modeller som kan tillämpas i sammanhanget.
Begrepp
Förmågan att använda och analysera matematiska begrepp och samband mellan begrepp.
  • Ma
Eleven har grundläggande kunskaper om matematiska begrepp och visar det genom att använda dem i välkända sammanhang på ett i huvudsak fungerande sätt. Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett i huvudsak fungerande sätt. I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra enkla resonemang kring hur begreppen relaterar till varandra.
Eleven har goda kunskaper om matematiska begrepp och visar det genom att använda dem i bekanta sammanhang på ett relativt väl fungerande sätt. Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett relativt väl fungerande sätt. I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra utvecklade resonemang kring hur begreppen relaterar till varandra.
Eleven har mycket goda kunskaper om matematiska begrepp och visar det genom att använda dem i nya sammanhang på ett väl fungerande sätt. Eleven kan även beskriva olika begrepp med hjälp av matematiska uttrycksformer på ett väl fungerande sätt. I beskrivningarna kan eleven växla mellan olika uttrycksformer samt föra välutvecklade resonemang kring hur begreppen relaterar till varandra.
Metoder
Förmågan att välja och använda lämpliga matematiska metoder för att göra beräkningar och lösa rutin-uppgifter.
  • Ma
Eleven kan välja och använda i huvudsak fungerande matematiska metoder med viss anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med tillfredställande resultat
Eleven kan välja och använda ändamålsenliga matematiska metoder med relativt god anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med gott resultat.
Eleven kan välja och använda ändamålsenliga och effektiva matematiska metoder med god anpassning till sammanhanget för att göra beräkningar och lösa rutinuppgifter inom aritmetik, algebra, geometri, sannolikhet, statistik samt samband och förändring med mycket gott resultat.
Resonemang
Förmågan att föra och följa matematiska resonemang.
  • Ma
Eleven för enkla och till viss del underbyggda resonemang om val av tillvägagångssätt och om resultatens rimlighet i förhållande till problemsituationen samt kan bidra till att ge något förslag på alternativt tillvägagångssätt.
Eleven för utvecklade och relativt väl underbyggda resonemang om tillvägagångssätt och om resultatens rimlighet i förhållande till problemsituationen samt kan ge något förslag på alternativt tillvägagångssätt.
Eleven för välutvecklade och väl underbyggda resonemang om tillvägagångssätt och om resultatens rimlighet i förhållande till problemsituationen samt kan ge förslag på alternativa tillvägagångssätt.
Kommunikation
Förmågan att använda matematikens uttrycksformer för att samtala om, argumentera och redogöra för frågeställningar, beräkningar och slutsatser.
  • Ma
Eleven kan redogöra för och samtala om tillvägagångssätt på ett i huvudsak fungerande sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer med viss anpassning till syfte och sammanhang. I redovisningar och diskussioner för och följer eleven matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som till viss del för resonemangen framåt.
Eleven kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer med förhållandevis god anpassning till syfte och sammanhang. I redovisningar och diskussioner för och följer eleven matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt.
Eleven kan redogöra för och samtala om tillvägagångssätt på ett ändamålsenligt och effektivt sätt och använder då symboler, algebraiska uttryck, formler, grafer, funktioner och andra matematiska uttrycksformer med god anpassning till syfte och sammanhang. I redovisningar och diskussioner för och följer eleven matematiska resonemang genom att framföra och bemöta matematiska argument på ett sätt som för resonemangen framåt och fördjupar eller breddar dem.